Long-term stability of variable stepsize approximations of semigroups
نویسندگان
چکیده
This paper is concerned with the stability of rational one-step approximations of C0 semigroups. Particular emphasis is laid on long-term stability bounds. The analysis is based on a general Banach space framework and allows variable stepsize sequences. Under reasonable assumptions on the stepsize sequence, asymptotic stability bounds for general C0 semigroups are derived. The bounds are typical in the sense that they contain, in general, a factor that grows with the number of steps. Under additional hypotheses on the approximation, more favorable stability bounds are obtained for the subclass of holomorphic semigroups.
منابع مشابه
On the Stability of Variable Stepsize Rational Approximations of Holomorphic Semigroups
We consider variable stepsize time approximations of holomorphic semigroups on general Banach spaces. For strongly A(0)-acceptable rational functions a general stability theorem is proved, which does not impose any constraint on the ratios between stepsizes.
متن کاملA hybrid method with optimal stability properties for the numerical solution of stiff differential systems
In this paper, we consider the construction of a new class of numerical methods based on the backward differentiation formulas (BDFs) that be equipped by including two off--step points. We represent these methods from general linear methods (GLMs) point of view which provides an easy process to improve their stability properties and implementation in a variable stepsize mode. These superioritie...
متن کاملAn Investigation of Co-Movement of Financial Stability Index with Macro-Prudential Indicator through Wavelet Analysis
The present study aims at developing an aggregate financial stability index by using banking sector indices to assess financial stability and examine if the variable of credit-to-GDP gap corresponds to its long-term trend which represents the macro-prudential indicator has co-movement with the built financial stability index? To this end, monthly banking balance sheet data were collected from t...
متن کاملStability of variable and random stepsize LMS
The stability of variable stepsize LMS (VSLMS) algorithms with uncorrelated stationary Gaussian data is studied. It is found that when the stepsize is determined by the past data, the boundedness of the stepsize by the usual stability condition of xed stepsize LMS is su cient for the stability of VSLMS. When the stepsize is also related to the current data, the above constraint is no longer su ...
متن کاملAlmost sure exponential stability of the Euler–Maruyama approximations for stochastic functional differential equations
By the continuous and discrete nonnegative semimartingale convergence theorems, this paper investigates conditions under which the Euler–Maruyama (EM) approximations of stochastic functional differential equations (SFDEs) can share the almost sure exponential stability of the exact solution. Moreover, for sufficiently small stepsize, the decay rate as measured by the Lyapunov exponent can be re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 71 شماره
صفحات -
تاریخ انتشار 2002